Mathematics Specialist Units 3 & 4 Test 7 2016

Section 1 Calculator Free

Rectilinear Motion (including SHM) and Statistical Inference.

STUDENT'S NAME:	(SOLUTIONS)	

DATE: Thursday 8th September **TIME**: 20 minutes **MARKS**: 23

INSTRUCTIONS:

Standard Items: Pens, pencils, pencil sharper, eraser, correction fluid/tape, ruler, highlighters,

Formula Sheet.

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (6 marks)

A particle oscillates 1.2 m either side of a central position with simple harmonic motion. The period of the motion is 8 seconds.

(a) What is the maximum acceleration?

$$\leq |t,m| \Rightarrow \alpha = \frac{d^2z}{dt^2} = -k^2z$$

$$\Rightarrow$$
 $8 = \frac{2T}{R}$

: Mox acceleration

=
$$R^{2}A$$
 where $A = 1.2$
= $(II)^{2}(\frac{6}{5})$ = $\frac{6}{5}$
= II^{2} . $\frac{6}{5}$

[4]

[2]

$$=\frac{317^2}{40}\text{ ms}^{-2}$$

(b) What is the maximum speed?

Max speed
$$= RA$$

$$= II \times 6$$

$$= 3II \quad ms^{-1}$$

$$= 10$$

ie.
$$V^2 = k^2 (A^2 - > c^2)$$

Max speed occurs when $x = 0$

$$\Rightarrow V^2 = k^2 A^2$$

$$\Rightarrow V = k A$$

$$= T_4 \times G$$

$$= \frac{3\pi}{10} \text{ ms}^{-1}$$

2. (8 marks)

A particle moves in a straight line. Its displacement (metres) from a fixed point is given by x(t) where t, is time in seconds. The acceleration of the particle is given by a(t) = 2 - 4x, where x(0) = v(0) = 0 and $v(t) \ge 0 \ \forall t$.

E Forall t.

(a) Determine
$$v$$
 in terms of x .

Determine vin terms of x.

$$a(t) = V \frac{dV}{dx}$$

$$\Rightarrow 2-4x = V \frac{dV}{dx}$$

$$\Rightarrow (2-4x)dx = \int V dV$$

$$\Rightarrow 2x-2x^2 = \frac{V^2}{2} + C$$

$$\Rightarrow V^2 = 4x-4x^2 + K \qquad \text{where } R = 2C$$

$$x(0) = v(0) = 0 \Rightarrow K = 0$$

$$\Rightarrow V = \sqrt{4x-4x^2}$$

$$\therefore V = 2\sqrt{x-x^2} \qquad \text{(discard } -2\sqrt{x-x^2}$$

$$\text{Since } v(t) > 0, \forall t.$$

(b) Hence, determine the range of values for x and v.

$$x-x^{2} \geqslant 0$$

$$\Rightarrow x(1-x) \geqslant 0$$

$$\Rightarrow x(1-x) \geqslant 0$$

$$\Rightarrow \sqrt{-x^{2}+x}$$

$$\Rightarrow ceurs at x=\frac{1}{2}$$

$$\Rightarrow \sqrt{-2} \Rightarrow \sqrt{-2} \Rightarrow$$

[4]

[4]

3. (9 marks)

The time taken to complete a task has mean μ minutes and standard deviation 10 minutes. For Z as the standard normal variable, $P(-2.5 < Z < 2.5) \approx 0.988$.

(a) A sample of 100 students completed the task with a mean time of 102 minutes. State a 98.8% confidence interval for μ .

$$|02 \pm 2.5 \frac{10}{\sqrt{100}}$$

$$\Rightarrow 99.5 \le N \le 106.5 \quad \text{minuter}$$

(b) Another sample of n students (where $n \ge 30$) is chosen. Determine n if we are to be 98.8% confident that the sample mean is to differ from μ by no more than 1.25 minutes.

$$2.5 \frac{10}{\sqrt{n}} \leq 1.25$$

$$\Rightarrow \sqrt{n} \geq \frac{2.5 \times 10}{1.25}$$

$$= 20$$

$$\therefore n = 400$$

Population

(c) Given that $\mu = 100$ minutes, estimate the probability that a sample of 100 students will complete the task with a mean time exceeding 102.5 minutes.

$$X \sim N(100, (\frac{10}{100})^{2}) \sim N(100, 1^{2})$$

$$P(X > 102.5) = P(Z > \frac{102.5 - 100}{1})$$

$$Recall:$$

$$Z = \frac{X - N}{1}$$

$$dedicated to Trung!$$

$$= P(Z > 0.5) - 1^{2}(0 \le Z \le 2.5)$$

$$= 0.5 - 0.494$$

$$= 0.006$$

$$= 0.006$$
End of Questions

Mathematics Specialist Units 3 & 4 Test 7 2016

Section 2 Calculator Assumed

Rectilinear Motion (including SHM) and Statistical Inference.

STUDENT'S NAME:	(SOLUTIONS)
STUDENT S NAME.	

DATE: Thursday 8th September

TIME: 30 minutes

MARKS: 34

INSTRUCTIONS:

Standard Items:

Pens, pencils, pencil sharper, eraser, correction fluid/tape, ruler, highlighters,

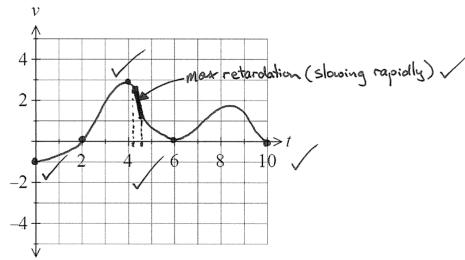
Formula Sheet retained from Section 1.

Special Items:

Drawing instruments, templates, three calculators, notes on one side of a single A4 page

(these notes to be handed in with this assessment).

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.


4. (7 marks)

An object, travelling in a straight line, has an initial velocity of v = -1 m/s and is capable of a maximum speed of 3 m/s. During its travels it reaches its maximum speed, stops twice but changes direction only once, before coming to rest after 10 seconds.

(a) Sketch on the axes below, a possible graph of v = f(t) for $0 \le t \le 10$. [4]

Comment:

For all you 'straight' line people, I very nearly adoles in "with non-constant acceleration"

(b) Indicate on your graph when the object is subject to maximum retardation.

ie. greatest negative gradient

Provide a mathematical statement for calculating the distance travelled in the 10 seconds.

Dist. Travelled = $\int_0^{10} |f(t)| dt$ [2]

[1]

5. (10 marks)

A vehicle travels along a straight stretch of highway. The driver notices a car stalled on the highway k meters ahead and applies the brakes of the vehicle. The acceleration of the vehicle t seconds after the breaks are applied is given by $a = -10e^{-0.1t}$

(a) Determine an expression for the displacement of the vehicle *t* seconds after the brakes are applied.

when
$$V = \int_{-10}^{-10} e^{-0.1t} dt$$

$$= 100e^{-0.1t} + C$$

$$x = \int_{-100}^{100} e^{-0.1t} + C dt$$

$$= -1000e^{-0.1t} + Ct + K$$
Siven
$$x(0) = 0 \Rightarrow k = 1000$$

$$x = -1000e^{-0.1t} + Ct + 1000$$

$$x = -1000e^{-0.1t} + Ct + 1000$$

(b) The vehicle comes to a complete stop after 3 seconds just behind the stalled car. Determine k and the initial speed of the vehicle.

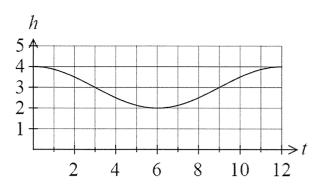
Determine k and the initial speed of the vehicle.

Siven
$$V(3) = 0 \Rightarrow 1000 + C = 0$$

$$C = -74.0818$$

now
$$k = x(3) = -1000e^{-0.1(3)} - 74.0818(3) + 1000$$

$$= 36.9 m (1d.p.)$$


Initial speed of vehicle
$$V(0) = 100 - 74.0818$$

$$= 25.9 \text{ ms}^{-1} (10.12)$$

6. (9 marks)

The depth of water h(t) metres at a jetty is graphed against time (t hours) as shown in the accompanying diagram. The height, y, of the water surface above the mean water level

satisfies the equation $\frac{d^2y}{dt^2} = -n^2y$.

(b) Determine an expression for y(t) and hence, determine an expression for h(t) in terms of y(t).

Let
$$y(t) = A \cos(kt + \beta)$$

Where $A = 1$, $k = \overline{b}$, $\beta = 0$

Recall:

Pericol: $T = \frac{2\pi}{k}$
 $y(t) = \cos(\overline{b})$
 $y(t) = \cos(\overline{b})$

(c) Calculate the time interval between two consecutive occasions when the water level is at a depth of 3.5 m.

$$3 + \cos\left(\frac{\pi t}{6}\right) = 3.5$$

$$\Rightarrow t = 2 \text{ or } t = 10 \text{ Use Class Rad}$$

$$\therefore \text{ the time interval is 8 hours apart}$$

(d) For 60% of the *period*, the water level exceeds k metres. Determine k.

$$60\% \times 12$$
= 7.2 hrs (above)
$$7.6 \le t \le 8.4$$

$$1 \times 8 \text{ hrs below}.$$

$$1 \times 2 \times 69 \text{ m} (20.2)$$

$$2.69 \text{ m} (20.2)$$

7. (8 marks)

The time taken for a child to complete a particular puzzle is <u>normally distributed</u> with a mean 3 minutes and standard deviation 20 seconds.

(a) A sample of fifty children of the same age collectively took 2 hours and 35 minutes to complete the puzzle. Calculate the mean time, in seconds, for this sample. [2]

$$\overline{z} = \frac{155}{50}$$

$$= 3.1 \text{ minutes}$$

$$= 186 \text{ seconds}$$

(b) Estimate the probability that <u>a second sample of 50</u> students of the same age will take a total of more than 2 hours and 35 minutes to complete the puzzle.

By CLT
$$= N(180, (\frac{20}{150})^2)$$

$$= 0.01695$$

(c) Children who complete the puzzle under k seconds are classified 'highly gifted'. If 0.01% of all children are classified highly gifted, determine the value of k. [2]

End of Questions